

Machine learning to predict relevant support
content based on historical user interactions

Final Report

Client: Workiva
Advisor: Neil Zhenqiang Gong

Team Members and Roles:
Erin Elsbernd: Communication Coordinator and Machine Learning Lead

Ram Luitel: Project Manager and Software Architect
Faizul Jasmi: Testing and AWS Tech Lead

Taizhong Huang: QA Lead
Christian Chiang: Webmaster and AWS Tech Lead

Khoa Bui: Webmaster and DB lead

http://sddec18-16.sd.ece.iastate.edu/
sddec18-16@iastate.edu

http://sddec18-16.sd.ece.iastate.edu/

Table Of Content

Acknowledgement 3

1. Project Objective 3
a. Problem Statement 3
b. Clients 4
c. Target users 4

2. Requirements specification 4
a. Functional requirements 4
b. Non-functional requirements 4

3. Development process 4
a. Rationale 4

4. Design plan 5
a. Use-cases (tied to requirements) 6
b. Modules 6
c. Module constraints (tied to requirements) 6

5. Test Plan 6
a. Unit testing (functional module) 7
b. Integrity testing (functional interface) 7
c. User-study (non-functional and functional) 7

6. Implementation 7
a. Choice of languages, libraries 7
b. Choice of development frameworks 8
c. Algorithmic choices 8
d. Maintainability of software for future evolution 8
e. Safety and security concern, if applicable 8
f. Engineering tradeoffs 8

7. Traceability 8
a. Requirements → Design → Implementation → Test plan 8

8. Testing, Validation and Verification 9
a. Test case evaluation (automated vs. manual, and coverage) 9
b. Validation and verification as appropriate for the project. 9

9. Project management 9
a. Roles 9
b. Responsibilities 10
c. Timeline (projected vs. real) 10
d. Lessons learned 10

Acknowledgement
We feel very thankful and fortunate to be assigned to this project which will help us
develop our machine learning skills. The success and outcome of our project required
a lot of guidance and assistance from many people and we are extremely privileged to
have this input.

We respect and thank Mr. Alex Kharbush for developing this project and giving ISU
students the chance to tackle the problem. We are also grateful for the resources and
direction he provided throughout the two semesters. We would also like to recognize
Dr. Neil Gong for being our faulty advisor and meeting biweekly to provide necessary
support and guidance.

We heartily thank Dr. Thomas Daniels for constant encouragement, support and
guidance which was helpful for us to successfully complete our project work. Also, we
would like to extend our sincere esteems to all teaching assistants for their input.

1. Project Objective
a. Problem Statement
Workiva has an application called Wdesk. At the moment Wdesk users utilize a search
engine to search for help articles when they are having a problem with the app.
However, the search bar is not the most effective at listing specific help articles based
on the needs of the user. Searching for a topic requires browsing through many
different articles, and then browsing through the contents of each of those articles to
hopefully arrive at the solution to the user’s problem.

Workiva would like to automate the help article search process by tracking the user’s
actions while using Wdesk and predicting a help article based on these actions.
Currently there are no automated tools that suggest relevant help articles to the
Wdesk user. Therefore, if a user cannot troubleshoot an issue, they will often call a
customer support number. With this current setup, if Workiva wants to expand their
business, they will need to hire additional customer support staff to handle larger
accounts. This is not a sustainable business model. Workiva would like to provide a
better customer support experience with their Wdesk app, by using predictive models
to help the user troubleshoot instead of humans. This will save lot of time and money.

https://www.workiva.com/wdesk

b. Clients
Workiva is an enterprise software company based in Ames, Iowa. Founded in 2008 as
Webfilings, its main product is Wdesk, a cloud-based enterprise management and
auditing software-as-a-service platform that enables companies to create and file
financial and compliance reports and documents to the SEC and other federal and
state regulatory agencies.

 c. Target users
Our end product is a model that will be used by developers at Workiva to integrate
with the Wdesk app. However, the model will directly impact how Workiva customers
use and interact with the Wdesk app.

2. Requirements specification
a. Functional requirements

● The recommendation model should be able to make recommendations for help
articles and display the recommended article ID

● The model must be able to run on AWS.

b. Non-functional requirements
● The recommendation model should be optimized to run as quickly as possible.
● The recommendation model should be scalable with large and real-time data.
● The model should be written in Python.

3. Development process
a. Rationale
We used the Agile software development process. First, we worked with our client to
gather preliminary requirements. Next we did research on recommendation algorithms
and began the initial design of the project. After we started to develop, we had to
change some of our approaches based on the data we received from the client or poor
performance of a model. Working in an Agile environment allowed us to be more
responsive to changing requirements and roadblocks. We used storyboarding on
trello, and also used github for version control. Our test design diagram referenced in

section 7(a) reflects the iterative nature of our design and implementation process
throughout the project.

4. Design plan
Our final system was the result of a long, iterative process. At its core, our system
reads in data on user actions, processes this data into features, feeds these features
to a random forest classifier, and finally, the classifier outputs a help article prediction.
This entire system also runs on AWS.

a. Use-cases (tied to requirements)
Our project has a single use case: given a user action-event sequence, predict a
relevant help article based on this action sequence. In order to support this use case,
we had to create a system that could read in user data, process this data, create
features from the data, use those feature to train a prediction model, and have the
model predict help articles based on user actions with over 70% accuracy. We then
had to deploy this system on AWS and ensure the entire system was written in Python
to meet the requirements of our client.
The most important aspect of our project was the model to make help article
recommendations. To find a model we implemented several machine learning and
deep learning models and selected the best performing one for our final model to use
in production. It quickly become clear that the random forest classifier was the best
performing. It didn’t take as much time to train as an SVM and also had greater
baseline accuracy than any of the neural network approaches we tried. However, a
model is only as good as the data it is provided with.To process our data and generate
features we used the scikit-learn and nltk libraries. This was because we found much
success in treating the data on user action events as text data, and the
aforementioned python libraries made creating features from the user data less
burdensome.
We used tf-idf matrices, bag of words and n-grams approaches to try to capture
important action events and sequences of user interactions. We mapped each user
event-action to an int, and then took all the sequences of events for each user and put
them into a term frequency inverse document frequency matrix, or tf-idf matrix. This
matrix stored data on important events like which actions were most frequent and
which types of actions commonly occurred together.
Since we had over 170 help articles to predict and only 690 data points, we had to
group the help articles try to increase the prediction accuracy of the models. This way
instead of training a classifier to predict one of 170 help articles for a given data point,
we would only need to train a classifier to predict one of approximately 20 subgroups.
This helped our models perform better given the limited amount of data we received.

b. Modules

 i. Dependency/Concurrency
We have several lambdas to do different tasks for the project. This essentially means
the lambdas are interdependent on other lambdas output which means that some of
the lambda are preconditions for others. Refer to Figure 1 in Architectural overview
section for an illustrative view.

 ii. Interfaces
Since we do not have any to build any front-end facing application for this project, we
do not have any user interfaces(UI) to present. Also the interface that records the user
activity data was provided by the client so we do not have any interface for the project.

 iii. Architectural overview

 Figure 1: Architecture of project

The data will come straight from the WDesk application; it will come as raw data from
the users, with many useless columns, and we will then store all those files in an AWS
s3 bucket. Then, an Aggregating lambda will make all those files into one Dynamo
Table for easier clean-up. Once the data is cleaned another lambda in charge of
cleaning will parse through the aggregated table and select only the columns used by
our models to be put into another table. Having a Dynamo Table will then allow the ML
Model Lambda to consume it and produce the predictions based off the dataset.

c. Module constraints (tied to requirements)
Initially our team had little experience with machine learning and recommendation
systems so we had to do a great amount of research and experimentation during the
first semester. Having to learn and develop at the same time led to some unavoidable
time constraints and delays in getting better prediction results. We also had to work
closely with our client to ensure that our system was developed in a way where it
could be eventually incorporated into the Wdesk app.
The strength of using models like random forests, SVMs, or neural networks is that
they are auto trainable and environment independent. This is important since we
wanted our end product to be part of a larger automated process that runs on an
Amazon Web Service(AWS) environment. Since we are using supervised learning,
we trained our models with labeled training examples, and then tested our models with
labeled test data. This mean that we can keep and add to a large stored dataset in the
cloud that we can use to update our models on AWS. As more labeled examples are
added to the training data, we expect that the models will perform better over time as
they are able to better recognize relationships between user actions and relevant help
articles. Thus, one potential drawback of our project is that the success of our model is
dependent on how much data we have access to to train our models. Overall, our
model did not perform as well as we hoped, and this was partially due to have a
limited amount of training data.
One of the drawbacks of using classification models is that performance decrease of
the function has too many non-linear relationships. Similarly, the disadvantage of
using the random forest model is that decision trees are disposed to overfitting since
their bounds are not closed and the tree keeps on branching until we reach the
endpoint. In other words, it is really difficult for us to come up with really good
predicting model unless we try many different features in our models. To overcome
this, we had to spend a lot of time tuning our random forest models and testing them
many times on different subsets of the data to ensure the model was not overfitting.
Another potential drawback was using neural networks, and we eventually decided not
to use them. Since we created our models ourselves and didn’t rely on a machine
learning as a service tools, we had to make sure we understood what was happening
mathematically in the models. This way we could efficiently tune the models and make
sure we were giving them informative features. Neural Networks are notoriously finicky
when it comes to tuning and understanding them. Ultimately, we did not have great
success on using neural networks for help article predictions.

5. Test Plan
The core of our project was a machine learning model and not a software application.
That being said, we wrote tests for reading in data and assessing data quality. We
also created test methods for gauging efficacy of features to give our classification

algorithm and for gauging the accuracy of predictions. We tested the models
continuously throughout the process of development.

a. Unit testing (functional module)
We utilized unit tests throughout our project, most of these tests used built-in functions
from machine learning and statistics libraries. We had basic unit tests for verifying the
data we read from csv files. We also used visual and statistical testing methods to
gauge the performance of our data features, model hyperparameters, and model
performance.

● Test to make sure the data is not incomplete or mislabeled.
● Use F1 scores, ROC curves, and confusion matrices etc. to gauge the

accuracy and prediction competency of our models. This involves testing to
ensure a model has over 70% accuracy.

● Use cross-validation to test and tune features and model hyperparameters. For
example, running different combinations of model parameters through many
simulations to find the optimal parameter values to pass our random forest
classifier: number of estimators, max depth of the tree, or the max number of
leaf nodes.

b. Integrity testing (functional interface)
Data quality testing was critical for automation of data processing and feature
generation. When starting out on this project we had to go through much
trial-and-error to determine the best way to transform the data into a format that could
interpreted by our classification algorithms. Having data quality checks helped to
streamline the process of feature generation.

c. User-study (non-functional and functional)
 The following list includes testing for non-functional requirements

● Performance: Test that the prediction model should be able to predict the
helpful article within several seconds of the initial query.

● Scalability: Test that the model should eventually be able to process any size
of data

● Extensibility: Test that the model should be able to compile and run on AWS.
● Usability: Acceptance testing by the client would check that the model we

develop should be easy to understand and use for Workiva developers so that
they can integrate it without any problems with their current application.

6. Implementation
a. Choice of languages, libraries
Our client required the machine learning models to be written in Python. Thus, we
used several Python libraries to support our machine learning model and testing:
scikit-learn, keras with tensorflow backend, matplotlib, and imblearn. We selected
these libraries because they are the most widely used machine learning tools for
python data analysis.

To process our data and generate features we used scikit-learn and nltk libraries as
treated the user data as text data and time series data, depending on the type of
model used. This way we were able to use bag of words and n-grams approaches to
try to capture important action events and sequences of user interactions. For
oversampling, we utilized the imblearn library. Finally, for visually testing and
assessing model performance, we used matplotlib for graphs.

There are several other open-source tools for our project. Tensorflow is not the only
machine learning framework available, but as its provided by google the
documentation and ease of use attracted us to that tool. Keras makes interfacing with
Tensorflow easier and we initially used Keras with Tensorflow when experimenting
with using neural networks. However, in our final models we used scikit-learn to create
our random forests. Scikit-learn also has great support online, as well as regular
updates. This ensured that models could eventually be safely used in Workiva’s
application without fear of being downgraded or unsupported in the future.

Another big platform for machine learning are Google Cloud and AWS, they both offer
services that will facilitate the cloud hosting of our models. They provide machine
learning as a service tools for both data processing and actual machine learning
models themselves. We have not looked into using any of their data tools yet, but we
believe their automated data processing tools may be useful for us next semester
when we want to get our model running on AWS and have the entire data ingestion,
processing, and model prediction process streamlined. As for this term, our main
focus is on creating models that will yield at least 70% of accuracy.

Regardless, we still used AWS to automate and facilitate some of our application
microservices. DynamoDB was used to store the data provided from the WDesk
application; this allowed us to access the most recent and most updated dataset
available every time. The data comes as a bunch of “dirty” .csv files that are
aggregated and cleaned using a Serverless lambda from AWS. This provided an
effective way to sort and clean the data, allowing the models to consume the latest
version of processed data.

b. Choice of development frameworks
For the machine learning algorithms, we developed primarily using Jupyter Notebooks
and python ide like Visual Studio Code and PyCharm. The Notebooks were used
because they make working with data extremely easy, and allowed us to add visual
plots and charts to our code. This way we could trace how the data changed for
feature processing, and also see how our models performed. We could also save
these Notebooks and present them to our client to give an idea of our model
performance and the types of features we were creating from the data.

In the cloud section we decided to use Amazon Web Services (AWS) instead of other
services like Google Cloud or Microsoft Azure. All providers have similar services, but
the main reason in choosing AWS over any of them is the familiarity the team has with
working with it. AWS has proven to be the a reliable source and there is great
documentation online. For the cleaning and whole architecture it was decided to use
Chalice for our API Request and AWS lambda deployment framework. Chalice
facilitates the creation of lambda and creates endpoint routes for all your different
needs. This is the go-to framework the industry uses when creating an AWS
serverless application.

c. Algorithmic choices
In terms of model selection, we settled on using random forests and neural networks
mainly because their baseline prediction accuracy with our data and feature
processing was higher than other models. Our client had initially suggested using
LSTM neural networks, i.e. recurrent neural networks with long short-term memory
units. However, the baseline prediction accuracy achieved from NNs was very low
compared to that of random forest models. Thus, we decided to use random forests
for our final model.

For feature generation we decided to treat the user action data as text data. To start
preparing our data, we took a folder of over 1000 csv files on user behavior and
condensed them into one dataframe that contained information on the user, the date,
the actions the user took while using WDesk, and the help article they found useful
based on this action sequence. The help article is the dependent variable we are
trying to predict. The user actions each correspond to some string label as do the help
article titles. For ease of working with data, we mapped all of these strings to a
dictionary of ints. This process is contained in a python file on our github, but we also
edited it so that we could eventually automate this data preparation task and put it on
AWS. After the data preparation, we began creating features. By creating text features
we went from 15% to over 50% accuracy with our random forest model. Thus we have
been creating text features, then feeding them to a neural network or random forest
model, testing the model and then looking at the breakdown of accuracies for each
class label to tweak our features and model. For example, if we found that our model
was very good at predicting a certain article that appeared a lot, we would go back

and create features that weight certain action sequences more for help articles that
are predicted less often. Using confusion matrices and looking at the precision and
recall values for each class/help article was an excellent guide for this process.

Grouping the help articles was another important strategy for increasing the accuracy
of our predictions. We initially had over 170 help articles to predict, but with fewer than
700 data points to train with, our models were performing poorly. For this reason we
decided to group the help articles together. This way our classifier would only need to
predict approximately 20 help articles, instead of 170. Our final system had two
classification rounds. First, given data on a user action-event sequence, a classifier
would predict a larger help article group. Then, we would give this same user data to a
second classifier to predict the specific help article. Overall, this strategy didn’t always
achieve over 70% accuracy, but did help us get closer to that benchmark.

d. Maintainability of software for future evolution
Since the early stage of the project, we have been prioritizing the maintainability and
expandability of the software. This played a big role in our decision in choosing the
technology that we wanted to use. Scikit learn is very popular and will be maintained
for a long time. This allows long term support and expandability when needed. The
software also used the most recent versions of Python which is Python 3.7.

e. Safety and security concern, if applicable
As like all other cloud computing AWS also comes with some security concerns.
However, this part of work really depends on client once we deliver our code to them.
As far as our project is concerned, we do not have security vulnerabilities. Just like
AWS mantra about security “ trust but verify”. If our client applies this mantra when
they integrate our prediction model with their existing system security protocols, then
there should be no issue. The only concern we can say as of now is if incorrect data is
fed to the models. Then the models might not predict helpful articles accurately
because the data is useless or in an incorrect format.

f. Engineering tradeoffs
Due to limited budget, time and human resources, we filtered most of data that we
think useless, such as, the type of computer, the type of browser and when users
made those behaviours. Because we aren’t fully utilizing all of the data features, it is
likely our model only picks up on certain patterns of behaviours, which may be
keeping the accuracy low. Due to the size of our training and testing data, the program
is single threaded. This saved us a lot of time focusing on the prediction model.

7. Traceability
a. Requirements → Design → Implementation → Test plan

 Figure 2: Testing Process Diagram

Figure 1 above illustrates our overall testing process, in addition to the overall
development, i.e. traceability, of our project. The very first step is data collection which
for us was provided by the client. Each time new data is received it must again be
processed and cleaned. We created lambdas to clean the data. After the data is
cleaned and processed into usable features, it will be used to train a model. The
model training and building process is very iterative. We had to train the model and
then test it to see how it performed. Using visual and statistical testing methods, we
had to determine how to tweak the model. This could mean either changing the
hyperparameters of the model, changing the features we gave the model (Test Data),
or some combination of the two. Thus, this cycle would continuously repeat itself.
When we were given new data from our client, we would start the process all over
again at Data Acquisition. When we had a sufficiently performing model, we could
then deploy it for use in a pseudo-production environment.

8. Testing, Validation and Verification
 a. Test case evaluation (automated vs. manual, and coverage)

Because our core project is a machine learning model, we had to test it manually by
actually feeding the model data and testing its performance using metrics like
accuracy, precision, recall, confusion matrices, and ROC curves. There is no pass or

fail with such metrics, and so we generally were more concerned that the results got
better over time. These metrics were also all contained within functions from the
scikit-learn library. Therefore, once we knew we were feeding the functions the right
information, we could guarantee that the tests were returning trustworthy information
about our model performance. Generally, we gave these functions the prediction
results from our model, and the actual results that should have been output. For
example, we could give our model a sequence of user actions that should result in
recommending Help Article #2, but our model predicts Help Article #3. Doing this
many times can help us develop a sense of the model’s performance. We were able to
automate this process somewhat by giving models different parameters and outputting
the results within a loop. But overall, we still had to go in and examine the results
ourselves, and manually tune the models through trial and error as needed.

In terms of coverage, these metrics can’t necessarily reveal specifically what is wrong
with the model, but they can give you hints. For example, when we originally grouped
the 170+ help articles into 20 groups, we found that some of the groups had values of
0.0 for precision and recall. This meant that our classifier was never even predicting
these group IDs and hinted that our class distributions were unequal. One way we
overcame this was through oversampling, reducing the number of classes for the
classifier to predict, and ensuring the help articles within a class shared some
common theme.

b. Validation and verification as appropriate for the project.
The process of developing our prediction models involved the following steps.

● In the future, user activity will be monitored and stored. This data will be
processed in real time as the user of Wdesk uses the application. However, we
were given and used a static dataset and didn’t need to worry about real time
data processing and storage.

● Our process takes in raw data and processes it as required by the prediction
algorithm we use, i.e generate features.

● The processed data will be tested that it still holds value, i.e. when we map
strings to ints, we test that this is actually the case.

● The generated features were tested for their value using cross-validation.
● The model was built and trained using training data.
● The model was tested using our test data. Based on the outcomes of the

testing step, we often had to go back to the data processing phase and repeat
until we got a higher accuracy with a given model. See functional and
non-functional testing for more specifics on model testing.

● After we got the desired performance of our model, we deployed it for use in
production environment.

9. Project management
a. Roles

Erin Elsbernd: Communication coordinator and Machine Learning Lead
Ram Luitel: Project Manager and Software Architect
Faizul Jasmi: Testing and AWS Tech Lead
Taizhong Huang: QA Lead
Christian Chiang: Webmaster and AWS Tech Lead
Khoa Bui: Webmaster and DB lead

b. Responsibilities

Erin Elsbernd: Communication coordinator with client and responsible for leading the
ML models.
Ram Luitel: Manage the team and responsible for design any architect changes to
the project.
Faizul Jasmi: Responsible for testing machine learning models and AWS
architecture.
Taizhong Huang: Responsible for manual QA
Christian Chiang: Responsible for AWS and lead the team for necessary changes to
technology stack and project architecture.
Khoa Bui: Responsible to project website and database related works

c. Timeline (projected vs. real)

We managed to follow our timeline overall. Our deliverables from February to
May 2018 were done on time. August 2018 marked the start of the 2nd semester of
the Senior Design Project. During that time, we discussed refining and training our
model by getting more data from Workiva. However, we did not receive as much new
data as we had hoped, and we also did not verify that new data wasn’t duplicated
data. This did not directly affect our timeline, but it affected the key result of the
planned deliverable. Our final model did not have at least 70% accuracy. By October
2018, we started to port our models and data cleaning models to AWS to make the
whole process an automated process.

d. Lessons learned

Overall, machine learning was a very new concept to most of the members on
the team. It would have been better to have more members research and understand
machine learning concepts so that we had more resources devoted to creating a
successful model. It also would have been helpful in terms of having more people
investigate the data we were given. We didn’t fully utilize all the information provided
in the datasets from our client. Having more individuals investigate the data for new
insights may have helped us create better features to give our model

Another factor was having regular meetings. In the first semester, we met every
week as a time in person, but during the second semester we did not meet as a group
every week. Even though we had good communication over online chat, meeting in
person helped keep everyone on task and on schedule. We may have been more
productive if we had kept to weekly check-ins over video chat.

