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1. Project Objective 
a. Problem Statement 
Workiva has an application called Wdesk. At the moment Wdesk users utilize a search              
engine to search for help articles when they are having a problem with the app.               
However, the search bar is not the most effective at listing specific help articles based               
on the needs of the user. Searching for a topic requires browsing through many              
different articles, and then browsing through the contents of each of those articles to              
hopefully arrive at the solution to the user’s problem. 

 
Workiva would like to automate the help article search process by tracking the user’s              
actions while using Wdesk and predicting a help article based on these actions.             
Currently there are no automated tools that suggest relevant help articles to the             
Wdesk user. Therefore, if a user cannot troubleshoot an issue, they will often call a               
customer support number. With this current setup, if Workiva wants to expand their             
business, they will need to hire additional customer support staff to handle larger             
accounts. This is not a sustainable business model. Workiva would like to provide a              
better customer support experience with their Wdesk app, by using predictive models            
to help the user troubleshoot instead of humans. This will save lot of time and money. 
  

https://www.workiva.com/wdesk


b. Clients 
Workiva is an enterprise software company based in Ames, Iowa. Founded in 2008 as              
Webfilings, its main product is Wdesk, a cloud-based enterprise management and           
auditing software-as-a-service platform that enables companies to create and file          
financial and compliance reports and documents to the SEC and other federal and             
state regulatory agencies.   
  

 c. Target users  
Our end product is a model that will be used by developers at Workiva to integrate                
with the Wdesk app. However, the model will directly impact how Workiva customers             
use and interact with the Wdesk app. 
  

2. Requirements specification  
a. Functional requirements 

● The recommendation model should be able to make recommendations for help 
articles and display the recommended article ID 

● The model must be able to run on AWS. 
 

b.  Non-functional requirements  
● The recommendation model should be optimized to run as quickly as possible. 
● The recommendation model should be scalable with large and real-time data. 
● The model should be written in Python. 

 

3. Development process 
a. Rationale 
We used the Agile software development process. First, we worked with our client to              
gather preliminary requirements. Next we did research on recommendation algorithms          
and began the initial design of the project. After we started to develop, we had to                
change some of our approaches based on the data we received from the client or poor                
performance of a model. Working in an Agile environment allowed us to be more              
responsive to changing requirements and roadblocks. We used storyboarding on          
trello, and also used github for version control. Our test design diagram referenced in              



section 7(a) reflects the iterative nature of our design and implementation process            
throughout the project.  

  

4. Design plan  
Our final system was the result of a long, iterative process. At its core, our system                
reads in data on user actions, processes this data into features, feeds these features              
to a random forest classifier, and finally, the classifier outputs a help article prediction.              
This entire system also runs on AWS.  

a. Use-cases (tied to requirements) 
Our project has a single use case: given a user action-event sequence, predict a              
relevant help article based on this action sequence. In order to support this use case,               
we had to create a system that could read in user data, process this data, create                
features from the data, use those feature to train a prediction model, and have the               
model predict help articles based on user actions with over 70% accuracy. We then              
had to deploy this system on AWS and ensure the entire system was written in Python                
to meet the requirements of our client.  
The most important aspect of our project was the model to make help article              
recommendations. To find a model we implemented several machine learning and           
deep learning models and selected the best performing one for our final model to use               
in production. It quickly become clear that the random forest classifier was the best              
performing. It didn’t take as much time to train as an SVM and also had greater                
baseline accuracy than any of the neural network approaches we tried. However, a             
model is only as good as the data it is provided with.To process our data and generate                 
features we used the scikit-learn and nltk libraries. This was because we found much              
success in treating the data on user action events as text data, and the              
aforementioned python libraries made creating features from the user data less           
burdensome.  
We used tf-idf matrices, bag of words and n-grams approaches to try to capture              
important action events and sequences of user interactions. We mapped each user            
event-action to an int, and then took all the sequences of events for each user and put                 
them into a term frequency inverse document frequency matrix, or tf-idf matrix. This             
matrix stored data on important events like which actions were most frequent and             
which types of actions commonly occurred together.  
Since we had over 170 help articles to predict and only 690 data points, we had to                 
group the help articles try to increase the prediction accuracy of the models. This way               
instead of training a classifier to predict one of 170 help articles for a given data point,                 
we would only need to train a classifier to predict one of approximately 20 subgroups.               
This helped our models perform better given the limited amount of data we received.  



b. Modules 

  i.  Dependency/Concurrency 
We have several lambdas to do different tasks for the project.  This essentially means 
the lambdas are interdependent on other lambdas output which means that some of 
the lambda are preconditions for others. Refer to Figure 1 in Architectural overview 
section for an illustrative view. 
 

  ii.  Interfaces 
Since we do not have any to build any front-end facing application for this project, we 
do not have any user interfaces(UI) to present. Also the interface that records the user 
activity data was provided by the client so we do not have any interface for the project.  
 

 iii.  Architectural overview 
 
 

 
 Figure 1:  Architecture of project 
 
 
 
The data will come straight from the WDesk application; it will come as raw data from 
the users, with many useless columns, and we will then store all those files in an AWS 
s3 bucket. Then, an Aggregating lambda will make all those files into one Dynamo 
Table for easier clean-up. Once the data is cleaned another lambda in charge of 
cleaning will parse through the aggregated table and select only the columns used by 
our models to be put into another table. Having a Dynamo Table will then allow the ML 
Model Lambda to consume it and produce the predictions based off the dataset. 



 

c. Module constraints (tied to requirements) 
Initially our team had little experience with machine learning and recommendation           
systems so we had to do a great amount of research and experimentation during the               
first semester. Having to learn and develop at the same time led to some unavoidable               
time constraints and delays in getting better prediction results. We also had to work              
closely with our client to ensure that our system was developed in a way where it                
could be eventually incorporated into the Wdesk app. 
The strength of using models like random forests, SVMs, or neural networks is that              
they are auto trainable and environment independent. This is important since we            
wanted our end product to be part of a larger automated process that runs on an                
Amazon Web Service(AWS) environment. Since we are using supervised learning,          
we trained our models with labeled training examples, and then tested our models with              
labeled test data. This mean that we can keep and add to a large stored dataset in the                  
cloud that we can use to update our models on AWS. As more labeled examples are                
added to the training data, we expect that the models will perform better over time as                
they are able to better recognize relationships between user actions and relevant help             
articles. Thus, one potential drawback of our project is that the success of our model is                
dependent on how much data we have access to to train our models. Overall, our               
model did not perform as well as we hoped, and this was partially due to have a                 
limited amount of training data.  
One of the drawbacks of using classification models is that performance decrease of             
the function has too many non-linear relationships. Similarly, the disadvantage of           
using the random forest model is that decision trees are disposed to overfitting since              
their bounds are not closed and the tree keeps on branching until we reach the               
endpoint. In other words, it is really difficult for us to come up with really good                
predicting model unless we try many different features in our models. To overcome             
this, we had to spend a lot of time tuning our random forest models and testing them                 
many times on different subsets of the data to ensure the model was not overfitting. 
Another potential drawback was using neural networks, and we eventually decided not            
to use them. Since we created our models ourselves and didn’t rely on a machine               
learning as a service tools, we had to make sure we understood what was happening               
mathematically in the models. This way we could efficiently tune the models and make              
sure we were giving them informative features. Neural Networks are notoriously finicky            
when it comes to tuning and understanding them. Ultimately, we did not have great              
success on using neural networks for help article predictions.  

5. Test Plan  
The core of our project was a machine learning model and not a software application.               
That being said, we wrote tests for reading in data and assessing data quality. We               
also created test methods for gauging efficacy of features to give our classification             



algorithm and for gauging the accuracy of predictions. We tested the models            
continuously throughout the process of development.  
 

a. Unit testing (functional module) 
We utilized unit tests throughout our project, most of these tests used built-in functions              
from machine learning and statistics libraries. We had basic unit tests for verifying the              
data we read from csv files. We also used visual and statistical testing methods to               
gauge the performance of our data features, model hyperparameters, and model           
performance. 

● Test to make sure the data is not incomplete or mislabeled. 
● Use F1 scores, ROC curves, and confusion matrices etc. to gauge the            

accuracy and prediction competency of our models. This involves testing to           
ensure a model has over 70% accuracy. 

● Use cross-validation to test and tune features and model hyperparameters. For           
example, running different combinations of model parameters through many         
simulations to find the optimal parameter values to pass our random forest            
classifier: number of estimators, max depth of the tree, or the max number of              
leaf nodes.  

  

b. Integrity testing (functional interface) 
Data quality testing was critical for automation of data processing and feature            
generation. When starting out on this project we had to go through much             
trial-and-error to determine the best way to transform the data into a format that could               
interpreted by our classification algorithms. Having data quality checks helped to           
streamline the process of feature generation.  
 

c. User-study (non-functional and functional) 
 The following list includes testing for non-functional requirements 

● Performance:  Test that the prediction model should be able to predict the 
helpful article within several seconds of the initial query. 

● Scalability:  Test that the model should eventually be able to process any size 
of data 

● Extensibility: Test that the model should be able to compile and run on AWS. 
● Usability:  Acceptance testing by the client would check that the model we 

develop should be easy to understand and use for Workiva developers so that 
they can integrate it without any problems with their current application. 



6. Implementation 
a. Choice of languages, libraries 
Our client required the machine learning models to be written in Python. Thus, we              
used several Python libraries to support our machine learning model and testing:            
scikit-learn, keras with tensorflow backend, matplotlib, and imblearn. We selected          
these libraries because they are the most widely used machine learning tools for             
python data analysis.  
 
To process our data and generate features we used scikit-learn and nltk libraries as              
treated the user data as text data and time series data, depending on the type of                
model used. This way we were able to use bag of words and n-grams approaches to                
try to capture important action events and sequences of user interactions. For            
oversampling, we utilized the imblearn library. Finally, for visually testing and           
assessing model performance, we used matplotlib for graphs.  
 
There are several other open-source tools for our project. Tensorflow is not the only              
machine learning framework available, but as its provided by google the           
documentation and ease of use attracted us to that tool. Keras makes interfacing with              
Tensorflow easier and we initially used Keras with Tensorflow when experimenting           
with using neural networks. However, in our final models we used scikit-learn to create              
our random forests. Scikit-learn also has great support online, as well as regular             
updates. This ensured that models could eventually be safely used in Workiva’s            
application without fear of being downgraded or unsupported in the future.  
 
Another big platform for machine learning are Google Cloud and AWS, they both offer 
services that will facilitate the cloud hosting of our models. They provide machine 
learning as a service tools for both data processing and actual machine learning 
models themselves. We have not looked into using any of their data tools yet, but we 
believe their automated data processing tools may be useful for us next semester 
when we want to get our model running on AWS and have the entire data ingestion, 
processing, and model prediction process streamlined. As for this term, our main 
focus is on creating models that will yield at least 70% of accuracy.  
 
Regardless, we still used AWS to automate and facilitate some of our application 
microservices. DynamoDB was used to store the data provided from the WDesk 
application; this allowed us to access the most recent and most updated dataset 
available every time. The data comes as a bunch of “dirty” .csv files that are 
aggregated and cleaned using a Serverless lambda from AWS. This provided an 
effective way to sort and clean the data, allowing the models to consume the latest 
version of processed data. 
 



b. Choice of development frameworks 
For the machine learning algorithms, we developed primarily using Jupyter Notebooks 
and python ide like Visual Studio Code and PyCharm. The Notebooks were used 
because they make working with data extremely easy, and allowed us to add visual 
plots and charts to our code. This way we could trace how the data changed for 
feature processing, and also see how our models performed. We could also save 
these Notebooks and present them to our client to give an idea of our model 
performance and the types of features we were creating from the data.  

 
In the cloud section we decided to use Amazon Web Services (AWS) instead of other 
services like Google Cloud or Microsoft Azure. All providers have similar services, but 
the main reason in choosing AWS over any of them is the familiarity the team has with 
working with it. AWS has proven to be the a reliable source and there is great 
documentation online. For the cleaning and whole architecture it was decided to use 
Chalice for our API Request and AWS lambda deployment framework. Chalice 
facilitates the creation of lambda and creates endpoint routes for all your different 
needs. This is the go-to framework the industry uses when creating an AWS 
serverless application. 

c. Algorithmic choices 
In terms of model selection, we settled on using random forests and neural networks              
mainly because their baseline prediction accuracy with our data and feature           
processing was higher than other models. Our client had initially suggested using            
LSTM neural networks, i.e. recurrent neural networks with long short-term memory           
units. However, the baseline prediction accuracy achieved from NNs was very low            
compared to that of random forest models. Thus, we decided to use random forests              
for our final model.  
 
For feature generation we decided to treat the user action data as text data. To start                
preparing our data, we took a folder of over 1000 csv files on user behavior and                
condensed them into one dataframe that contained information on the user, the date,             
the actions the user took while using WDesk, and the help article they found useful               
based on this action sequence. The help article is the dependent variable we are              
trying to predict. The user actions each correspond to some string label as do the help                
article titles. For ease of working with data, we mapped all of these strings to a                
dictionary of ints. This process is contained in a python file on our github, but we also                 
edited it so that we could eventually automate this data preparation task and put it on                
AWS. After the data preparation, we began creating features. By creating text features             
we went from 15% to over 50% accuracy with our random forest model. Thus we have                
been creating text features, then feeding them to a neural network or random forest              
model, testing the model and then looking at the breakdown of accuracies for each              
class label to tweak our features and model. For example, if we found that our model                
was very good at predicting a certain article that appeared a lot, we would go back                



and create features that weight certain action sequences more for help articles that             
are predicted less often. Using confusion matrices and looking at the precision and             
recall values for each class/help article was an excellent guide for this process. 
 
Grouping the help articles was another important strategy for increasing the accuracy            
of our predictions. We initially had over 170 help articles to predict, but with fewer than                
700 data points to train with, our models were performing poorly. For this reason we               
decided to group the help articles together. This way our classifier would only need to               
predict approximately 20 help articles, instead of 170. Our final system had two             
classification rounds. First, given data on a user action-event sequence, a classifier            
would predict a larger help article group. Then, we would give this same user data to a                 
second classifier to predict the specific help article. Overall, this strategy didn’t always             
achieve over 70% accuracy, but did help us get closer to that benchmark.  

d. Maintainability of software for future evolution 
Since the early stage of the project, we have been prioritizing the maintainability and              
expandability of the software. This played a big role in our decision in choosing the               
technology that we wanted to use. Scikit learn is very popular and will be maintained               
for a long time. This allows long term support and expandability when needed. The              
software also used the most recent versions of Python which is Python 3.7. 

e. Safety and security concern, if applicable 
As like all other cloud computing AWS also comes with some security concerns.             
However, this part of work really depends on client once we deliver our code to them.                
As far as our project is concerned, we do not have security vulnerabilities. Just like               
AWS mantra about security “ trust but verify”. If our client applies this mantra when               
they integrate our prediction model with their existing system security protocols, then            
there should be no issue. The only concern we can say as of now is if incorrect data is                   
fed to the models. Then the models might not predict helpful articles accurately             
because the data is useless or in an incorrect format.  
 

f. Engineering tradeoffs 
Due to limited budget, time and human resources, we filtered most of data that we 
think useless, such as, the type of computer, the type of browser and when users 
made those behaviours. Because we aren’t fully utilizing all of the data features, it is 
likely our model only picks up on certain patterns of behaviours, which may be 
keeping the accuracy low. Due to the size of our training and testing data, the program 
is single threaded. This saved us a lot of time focusing on the prediction model. 



7. Traceability  
a. Requirements → Design → Implementation → Test plan 

 Figure 2:  Testing Process Diagram  

 

Figure 1 above illustrates our overall testing process, in addition to the overall 
development, i.e. traceability, of our project. The very first step is data collection which 
for us was provided by the client. Each time new data is received it must again be 
processed and cleaned. We created lambdas to clean the data. After the data is 
cleaned and processed into usable features, it will be used to train a model. The 
model training and building process is very iterative. We had to train the model and 
then test it to see how it performed. Using visual and statistical testing methods, we 
had to determine how to tweak the model. This could mean either changing the 
hyperparameters of the model, changing the features we gave the model (Test Data), 
or some combination of the two. Thus, this cycle would continuously repeat itself. 
When we were given new data from our client, we would start the process all over 
again at Data Acquisition. When we had a sufficiently performing model, we could 
then deploy it for use in a pseudo-production environment.  
 

8. Testing, Validation and Verification  
 a. Test case evaluation (automated vs. manual, and coverage) 
 
Because our core project is a machine learning model, we had to test it manually by 
actually feeding the model data and testing its performance using metrics like 
accuracy, precision, recall, confusion matrices, and ROC curves. There is no pass or 



fail with such metrics, and so we generally were more concerned that the results got 
better over time. These metrics were also all contained within functions from the 
scikit-learn library. Therefore, once we knew we were feeding the functions the right 
information, we could guarantee that the tests were returning trustworthy information 
about our model performance. Generally, we gave these functions the prediction 
results from our model, and the actual results that should have been output. For 
example, we could give our model a sequence of user actions that should result in 
recommending Help Article #2, but our model predicts Help Article #3. Doing this 
many times can help us develop a sense of the model’s performance. We were able to 
automate this process somewhat by giving models different parameters and outputting 
the results within a loop. But overall, we still had to go in and examine the results 
ourselves, and manually tune the models through trial and error as needed.  
 
In terms of coverage, these metrics can’t necessarily reveal specifically what is wrong 
with the model, but they can give you hints. For example, when we originally grouped 
the 170+ help articles into 20 groups, we found that some of the groups had values of 
0.0 for precision and recall. This meant that our classifier was never even predicting 
these group IDs and hinted that our class distributions were unequal. One way we 
overcame this was through oversampling, reducing the number of classes for the 
classifier to predict, and ensuring the help articles within a class shared some 
common theme. 

b. Validation and verification as appropriate for the project. 
The process of developing our prediction models involved the following steps.  

● In the future, user activity will be  monitored and stored. This data will be 
processed in real time as the user of Wdesk uses the application.  However, we 
were given and used a static dataset and didn’t need to worry about real time 
data processing and storage.  

● Our process takes in raw data and processes it as required by the prediction 
algorithm we use, i.e generate features.  

● The processed data will be tested that it still holds value, i.e. when we map 
strings to ints, we test that this is actually the case. 

● The generated features were tested for their value using cross-validation. 
● The model was built and trained using training data. 
● The model was tested using our test data. Based on the outcomes of the 

testing step, we often had to go back to the data processing phase and repeat 
until we got a higher accuracy with a given model. See functional and 
non-functional testing for more specifics on model testing.  

● After we got the desired performance of our model, we deployed it for use in 
production environment.  

 



9. Project management  
a. Roles 
 
Erin Elsbernd: Communication coordinator and Machine Learning Lead 
Ram Luitel: Project Manager and Software Architect 
Faizul Jasmi: Testing and AWS Tech Lead 
Taizhong Huang: QA Lead 
Christian Chiang: Webmaster and AWS Tech Lead 
Khoa Bui: Webmaster and DB lead 
 

b. Responsibilities 
 
Erin Elsbernd: Communication coordinator with client and responsible for leading the 
ML models. 
Ram Luitel: Manage the team and  responsible for design any architect changes to 
the project. 
Faizul Jasmi: Responsible for testing machine learning models and AWS 
architecture. 
Taizhong Huang: Responsible for manual QA  
Christian Chiang: Responsible for  AWS and lead the team for necessary changes to 
technology stack and project architecture.  
Khoa Bui: Responsible to project website and database related works  
 

c. Timeline (projected vs. real) 

 



We managed to follow our timeline overall. Our deliverables from February to            
May 2018 were done on time. August 2018 marked the start of the 2nd semester of                
the Senior Design Project. During that time, we discussed refining and training our             
model by getting more data from Workiva. However, we did not receive as much new               
data as we had hoped, and we also did not verify that new data wasn’t duplicated                
data. This did not directly affect our timeline, but it affected the key result of the                
planned deliverable. Our final model did not have at least 70% accuracy. By October              
2018, we started to port our models and data cleaning models to AWS to make the                
whole process an automated process. 

d. Lessons learned 
 

Overall, machine learning was a very new concept to most of the members on 
the team. It would have been better to have more members research and understand 
machine learning concepts so that we had more resources devoted to creating a 
successful model. It also would have been helpful in terms of having more people 
investigate the data we were given. We didn’t fully utilize all the information provided 
in the datasets from our client. Having more individuals investigate the data for new 
insights may have helped us create better features to give our model  

Another factor was having regular meetings. In the first semester, we met every 
week as a time in person, but during the second semester we did not meet as a group 
every week. Even though we had good communication over online chat, meeting in 
person helped keep everyone on task and on schedule. We may have been more 
productive if we had kept to weekly check-ins over video chat.  
 


